THE PERFLUOROPINACOLYL GROUP, A STABILIZING SUBSTITUENT FOR UNUSUAL PHOSPHINES AND PHOSPHORANES

GERD-VOLKER RÖSCHENTHALER* AND WERNER STORZER

Lehrstuhl B für Anorganische Chemie der Technischen Universität Braunschweig, Pockelsstr. 4, D-33 Braunschweig

The perfluoropinacolyl group (=PFP) stabilises halogenophosphoranes of the type 1 e.g.

$$X^{1}$$
 X^{1}
 X^{2}
 X^{1}
 X^{2}
 X^{2}
 X^{1}
 X^{2}
 X^{2

 $x^1=x^2=x^3=F$,Cl,Br or $x^1=x^2=Cl$,Br, $x^3=F$, covalent species which are able to react with Li_2PFP to form spirocyclic systems [1]. Precursors of compounds $\underline{1}$ are the phosphites $\underline{2}$ (X=F,Cl,Br). The aminophosphite with X=NH $_2$ shows interesting behaviour towards hexafluoroacetone forming a spiro system containg a four and a five membered ring. Phosphites with $x=NR^1R^2$ add readily chlorine to give stable chlorophosphoranes. Products of the ammonolysis of the trifluorophosphoranes ($x^1=x^2=x^3=F$) were the aminophosphoranes (H_2N_1) $_1PF_3-_1$ (PFP) (n=1, 2,3) in good yields. Dynamic processes of the latter compounds were discussed on the bases of low temperatur $_1PF_1$ $_1PF_2$ $_1PF_2$ $_1PF_3$ $_1PF_4$ $_1PF_4$ $_1PF_4$ $_1PF_4$ $_1PF_4$ $_1PF_4$ $_1PF_4$ $_1PF_4$ $_1PF_5$ $_1PF_4$ $_1PF_4$ $_1PF_5$ $_1PF_$

1 G.-V. Röschenthaler, J.A. Gibson, K. Sauerbrey, and R. Schmutzler, Z. anorg. allg. Chem. 450 (1979)

^{*} Present address: Fachbereich 3, Universität Bremen,
D-28 Bremen 33